The Current Opinion journals were developed out of the recognition that it is increasingly difficult for specialists to keep up to date with the expanding volume of information published in their subject. Elsevier’s Current Opinion journals comprise of 17 leading titles in life sciences and adjacent fields.

Current Opinion in Neurobiology

5-Year Impact Factor: 7.284
Issues per year: 6 issues
Editorial Board

Current Opinion in Neurobiology

Current Opinion in Neurobiology contains:
• Over 90 reviews a year from leading international contributors
• Evaluated reference lists for all reviews

• Fully searchable
• Access back issues
• Numerous links

Search and read all issues from the very latest, back to the first, giving you access to your own reference library without leaving your desk.

Ethics in Publishing: General Statement

The Editor(s) and Publisher of this Journal believe that there are fundamental principles underlying scholarly or professional publishing. While this may not amount to a formal 'code of conduct', these fundamental principles with respect to the authors' paper are that the paper should: i) be the authors' own original work, which has not been previously published elsewhere, ii) reflect the authors' own research and analysis and do so in a truthful and complete manner, iii) properly credit the meaningful contributions of co-authors and co-researchers, iv) not be submitted to more than one journal for consideration, and v) be appropriately placed in the context of prior and existing research. Of equal importance are ethical guidelines dealing with research methods and research funding, including issues dealing with informed consent, research subject privacy rights, conflicts of interest, and sources of funding. While it may not be possible to draft a 'code' that applies adequately to all instances and circumstances, we believe it useful to outline our expectations of authors and procedures that the Journal will employ in the event of questions concerning author conduct. With respect to conflicts of interest, the Publisher now requires authors to declare any conflicts of interest that relate to papers accepted for publication in this Journal. A conflict of interest may exist when an author or the author's institution has a financial or other relationship with other people or organizations that may inappropriately influence the author's work. A conflict can be actual or potential and full disclosure to the Journal is the safest course. All submissions to the Journal must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest. The Journal may use such information as a basis for editorial decisions and may publish such disclosures if they are believed to be important to readers in judging the manuscript. A decision may be made by the Journal not to publish on the basis of the declared conflict.

For more information, please refer to:

Best Cited over the last year.

Subscribe to RSS Sciverse Scopus

Beta-band oscillations-signalling the status quo?

In this review, we consider the potential functional role of beta-band oscillations, which at present is not yet well understood. We discuss evidence from recent studies on top-down mechanisms involved in cognitive processing, on the motor system and on the pathophysiology of movement disorders that suggest a unifying hypothesis: beta-band activity seems related to the maintenance of the current sensorimotor or cognitive state. We hypothesize that beta oscillations and/or coupling in the…

Volume 20, Issue 2, 01 April 2010, Pp 156-165
Andreas K. Engel | Pascal Fries

Prefrontal control of fear: More than just extinction

Although fear research has largely focused on the amygdala, recent findings highlight cortical control of the amygdala in the service of fear regulation. In rodent models, it is becoming well established that the infralimbic (IL) prefrontal cortex plays a key role in extinction learning, and recent findings are uncovering molecular mechanisms involved in extinction-related plasticity. Furthermore, mounting evidence implicates the prelimbic (PL) prefrontal cortex in the production of fear…

Volume 20, Issue 2, 01 April 2010, Pp 231-235
Francisco Sotres-Bayon | Gregory J. Quirk

Neural computations associated with goal-directed choice

In goal-directed decision-making, animals choose between actions that are associated with different reward outcomes (e.g., foods) and with different costs (e.g., effort). Rapid advances have been made over the past few years in our understanding of the computations associated with goal-directed choices, and of how those computations are implemented in the brain. We review some important findings, with an emphasis on computational models, human fMRI, and monkey neurophysiology studies. © 2010…

Volume 20, Issue 2, 01 April 2010, Pp 262-270
Antonio Rangel | Todd Hare

Developmental neurobiology of cognitive control and motivational systems

One form of cognitive control is the ability to resist temptation in favor of long-term goal-oriented behavior. Historically, the development of cognitive control capacity has been described by a linear function from infancy to adulthood. However, the context in which control is required impacts behavioral regulation abilities, such that emotionally charged or rewarding contexts can diminish control. More recently, studies have begun to examine the development of cognitive control in contexts…

Volume 20, Issue 2, 01 April 2010, Pp 271-277
Leah H. Somerville | BJ J. Casey

Astrocyte heterogeneity: An underappreciated topic in neurobiology

Astrocytes, one of the most numerous types of cells in the central nervous system, are crucial for potassium homeostasis, neurotransmitter uptake, synapse formation, regulation of blood-brain-barrier, and the development of the nervous system. Historically, astrocytes have been studied as a homogeneous group of cells. However, evidence has accumulated that suggests heterogeneity of astrocytes across brain regions as well as within the same brain regions. Astrocytes differ in their morphology,…

Volume 20, Issue 5, 01 October 2010, Pp 588-594
Ye Zhang | Ben A. Barres

The root of all value: A neural common currency for choice

© 2012 Elsevier Ltd. How do humans make choices between different types of rewards? Economists have long argued on theoretical grounds that humans typically make these choices as if the values of the options they consider have been mapped to a single common scale for comparison. Neuroimaging studies in humans have recently begun to suggest the existence of a small group of specific brain sites that appear to encode the subjective values of different types of rewards on a neural common scale,…

Volume 22, Issue 6, 01 December 2012, Pp 1027-1038
Dino J. Levy | Paul W. Glimcher

Regulation of AMPA receptor trafficking and synaptic plasticity

AMPA receptors (AMPARs) mediate the majority of fast excitatory synaptic transmission in the brain. Dynamic changes in neuronal synaptic efficacy, termed synaptic plasticity, are thought to underlie information coding and storage in learning and memory. One major mechanism that regulates synaptic strength involves the tightly regulated trafficking of AMPARs into and out of synapses. The life cycle of AMPARs from their biosynthesis, membrane trafficking, and synaptic targeting to their…

Volume 22, Issue 3, 01 June 2012, Pp 461-469
Victor Anggono | Richard L. Huganir

Updating dopamine reward signals

Recent work has advanced our knowledge of phasic dopamine reward prediction error signals. The error signal is bidirectional, reflects well the higher order prediction error described by temporal difference learning models, is compatible with model-free and model-based reinforcement learning, reports the subjective rather than physical reward value during temporal discounting and reflects subjective stimulus perception rather than physical stimulus aspects. Dopamine activations are primarily…

Volume 23, Issue 2, 01 April 2013, Pp 229-238
Wolfram Schultz

Understanding the role of TDP-43 and FUS/TLS in ALS and beyond

Dominant mutations in two DNA/RNA binding proteins, TDP-43 and FUS/TLS, are causes of inherited Amyotrophic Lateral Sclerosis (ALS). TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as central in ALS. TDP-43 has binding sites within a third of all mouse and human mRNAs in brain and this binding influences the levels and splicing patterns of at least 20% of those mRNAs. Disease modeling in rodents of the first known cause of…

Volume 21, Issue 6, 01 December 2011, Pp 904-919
Sandrine Da Cruz | Don W. Cleveland

Re-valuing the amygdala

Recent advances indicate that the amygdala represents valence: a general appetitive/aversive affective characteristic that bears similarity to the neuroeconomic concept of value. Neurophysiological studies show that individual amygdala neurons respond differentially to a range of stimuli with positive or negative affective significance. Meanwhile, increasingly specific lesion/inactivation studies reveal that the amygdala is necessary for processes. -. for example, fear extinction and reinforcer…

Volume 20, Issue 2, 01 April 2010, Pp 221-230
Sara E. Morrison | C. Daniel Salzman

Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective

Neural stem and progenitor cells giving rise to neurons in developing mammalian neocortex fall into two principal classes with regard to location of mitosis-apical and basal, and into three principal classes in terms of cell polarity during mitosis-bipolar, monopolar, and nonpolar. Insight has been gained into how inheritance of polarized, apical and basal, cell constituents is related to symmetric versus asymmetric divisions of these progenitors, and how this inheritance is linked to their…

Volume 21, Issue 1, 01 February 2011, Pp 23-35
Simone A. Fietz | Wieland B. Huttner

Discrete capacity limits in visual working memory

The amount of information we can actively maintain 'in mind' is very limited. This capacity limitation, known as working memory (WM) capacity, has been of great interest because of its wide scope influence on the variety of intellectual abilities. Recently, there has been an ongoing debate about how this capacity should be best characterized. One viewpoint argues that WM capacity is allocated in a discrete fashion with an upper limit of three to four representations. An alternative viewpoint…

Volume 20, Issue 2, 01 April 2010, Pp 177-182
Keisuke Fukuda | Edward Awh | Edward K. Vogel

Dynamics of Active Sensing and perceptual selection

Sensory processing is often regarded as a passive process in which biological receptors like photoreceptors and mechanoreceptors transduce physical energy into a neural code. Recent findings, however, suggest that: first, most sensory processing is active, and largely determined by motor/attentional sampling routines; second, owing to rhythmicity in the motor routine, as well as to its entrainment of ambient rhythms in sensory regions, sensory inflow tends to be rhythmic; third, attentional…

Volume 20, Issue 2, 01 April 2010, Pp 172-176
Charles E. Schroeder | Donald A. Wilson | Thomas Radman | Helen Scharfman | Peter Lakatos

Learning and cognitive flexibility: Frontostriatal function and monoaminergic modulation

Learning in a constant environment, and adapting flexibly to a changing one, through changes in reinforcement contingencies or valence-free cues, depends on overlapping circuitry that interconnects the prefrontal cortex (PFC) with the striatum and is subject to several forms of neurochemical modulation. We present evidence from recent studies in animals employing electrophysiological, pharmacological and lesion techniques, and neuroimaging, neuropsychological and pharmacological investigations…

Volume 20, Issue 2, 01 April 2010, Pp 169-192
Angie A. Kehagia | Graham K. Murray | Trevor W. Robbins

Wnt signaling during synaptic development and plasticity

The formation of synaptic connections requires a dialogue between pre and postsynaptic cells to coordinate the assembly of the presynaptic release machinery and the postsynaptic receptive complexes. Signaling molecules of the Wnt family of proteins are central to this trans-synaptic dialogue. At the neuromuscular junction and central synapses, Wnts promote synaptic assembly by signaling to the developing pre and postsynaptic compartments. In addition, new studies reveal that expression of Wnt…

Volume 21, Issue 1, 01 February 2011, Pp 151-159
Vivian Budnik | Patricia C. Salinas

Development and functional organization of spinal locomotor circuits

The coordination and timing of muscle activities during rhythmic movements, like walking and swimming, are generated by intrinsic spinal motor circuits. Such locomotor networks are operational early in development and are found in all vertebrates. This review outlines and compares recent advances that have revealed the developmental and functional organization of these fundamental spinal motor networks in limbed and non-limbed animals. The comparison will highlight common principles and…

Volume 21, Issue 1, 01 February 2011, Pp 100-109
Ole Kiehn

Nonapeptide mechanisms of social cognition, behavior and species-specific social systems

Nonapeptide functions have been explored in a diverse literature that has burgeoned in recent years, particularly in relation to affiliation, bonding and human social cognition. However, brain distributions of the oxytocin-like and vasopressin-like peptides are fundamentally similar across all vertebrate animals, including many species that do not exhibit social bonds, grouping, or even parent-offspring interaction. Hence, unifying principles extend beyond, and may even constrain, nonapeptide…

Volume 20, Issue 6, 01 December 2010, Pp 784-794
James L. Goodson | Richmond R. Thompson

Neuronal migration mechanisms in development and disease

Neuronal migration is a fundamental process that determines the final allocation of neurons in the nervous system, establishing the basis for the subsequent wiring of neural circuitry. From cell polarization to target identification, neuronal migration integrates multiple cellular and molecular events that enable neuronal precursors to move across the brain to reach their final destination. In this review we summarize novel findings on the key processes that govern the cell biology of migrating…

Volume 20, Issue 1, 01 February 2010, Pp 68-78
Manuel Valiente | Oscar Marín

Basal ganglia contributions to motor control: A vigorous tutor

The roles of the basal ganglia (BG) in motor control are much debated. Many influential hypotheses have grown from studies in which output signals of the BG were not blocked, but pathologically disturbed. A weakness of that approach is that the resulting behavioral impairments reflect degraded function of the BG per se mixed together with secondary dysfunctions of BG-recipient brain areas. To overcome that limitation, several studies have focused on the main skeletomotor output region of the…

Volume 20, Issue 6, 01 December 2010, Pp 704-716
Robert S. Turner | Michel Desmurget

Structural plasticity of dendritic spines

Dendritic spines are small mushroom-like protrusions arising from neurons where most excitatory synapses reside. Their peculiar shape suggests that spines can serve as an autonomous postsynaptic compartment that isolates chemical and electrical signaling. How neuronal activity modifies the morphology of the spine and how these modifications affect synaptic transmission and plasticity are intriguing issues. Indeed, the induction of long-term potentiation (LTP) or depression (LTD) is associated…

Volume 22, Issue 3, 01 June 2012, Pp 383-388
Miquel Bosch | Yasunori Hayashi

Metabolic and hedonic drives in the neural control of appetite: Who is the boss?

Obesity is on the rise in all developed countries, and a large part of this epidemic has been attributed to excess caloric intake, induced by ever present food cues and the easy availability of energy dense foods in an environment of plenty. Clearly, there are strong homeostatic regulatory mechanisms keeping body weight of many individuals exposed to this environment remarkably stable over their adult life. Other individuals, however, seem to eat not only because of metabolic need, but also…

Volume 21, Issue 6, 01 December 2011, Pp 888-896
Hans Rudolf Berthoud

Human sensorimotor learning: Adaptation, skill, and beyond

Recent studies of upper limb movements have provided insights into the computations, mechanisms, and taxonomy of human sensorimotor learning. Motor tasks differ with respect to how they weight different learning processes. These include adaptation, an internal-model based process that reduces sensory-prediction errors in order to return performance to pre-perturbation levels, use-dependent plasticity, and operant reinforcement. Visuomotor rotation and force-field tasks impose systematic errors…

Volume 21, Issue 4, 01 August 2011, Pp 636-644
John W. Krakauer | Pietro Mazzoni

Network attributes for segregation and integration in the human brain

Network studies of large-scale brain connectivity have begun to reveal attributes that promote the segregation and integration of neural information: communities and hubs. Network communities are sets of regions that are strongly interconnected among each other while connections between members of different communities are less dense. The clustered connectivity of network communities supports functional segregation and specialization. Network hubs link communities to one another and ensure…

Volume 23, Issue 2, 01 April 2013, Pp 162-171
Olaf Sporns

Neuronal intrinsic barriers for axon regeneration in the adult CNS

A major reason for the devastating and permanent disabilities after spinal cord and other types of CNS injury is the failure of injured axons to regenerate and to re-build the functional circuits. Thus, a long-standing goal has been to develop strategies that could promote axon regeneration and restore functions. Recent studies revealed that simply removing extracellular inhibitory activities is insufficient for successful axon regeneration in the adult CNS. On the other side, evidence from…

Volume 20, Issue 4, 01 August 2010, Pp 510-518
Fang Sun | Zhigang He

The single dendritic branch as a fundamental functional unit in the nervous system

The conventional view of dendritic function is that dendrites collect synaptic input and deliver it to the soma. This view has been challenged in recent years by new results demonstrating that dendrites can act as independent processing and signalling units, performing local computations that are then broadcast to the rest of the neuron, or to other neurons via dendritic transmitter and neuromodulator release. Here we describe these findings and discuss the notion that the single dendritic…

Volume 20, Issue 4, 01 August 2010, Pp 494-502
Tiago Branco | Michael Häusser